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Extended Abstract:

 

 Problems in uncertainty and optimization are widespread in science and engi-
neering.  Their use in simulation for studying complex dynamical systems, from real models of civil
and aerospace structures to detailed models of weapons systems, is vital to design, analysis, and reli-
ability characterization.  Indeed, optimal design and superior reliability of key facilities and capabili-
ties in the light of uncertain events and threats have been on the front pages of our morning newspapers
in these days of seemingly impending war and concerns about international terrorism.  Design and
analysis of such systems is increasingly based on computer simulation, sometimes due to monetary,
policy, or practical impediments to physical testing, but often due to the extreme complexity of the
problems.  Some examples of large-scale computational models of current and pressing interest are
accident investigation of complex systems (space shuttle 

 

Columbia

 

), climate modeling (NCAR’s

 

Community Climate System Model

 

), projectile penetration into a media, protein and DNA/RNA mod-
eling (pharmaceutical research), biomedical applications (human heart, bioelectrochemistry of the
brain), cosmological models (early post-big-bang universe), etc.  In all of these, model complexity and
uncertainty abound.

  Great strides have been made in computational ability in recent years, advanced by programs
like the Accelerated Strategic Computing Initiative (ASCI, 2000) and through massively-parallel capa-
ble codes such as those in development at various national laboratories, 

 

e.g.

 

, DAKOTA at Sandia
National Laboratories (Eldred, 2001; Wojtkiewicz 

 

et al.

 

, 2001).  Yet, exacting study of the aforemen-
tioned complex systems, with all of the uncertainties that influence their behavior, taxes the computa-
tional capabilities of today’s most advanced computer platforms.  Models with billions of equations
are quite conceivable today, and it is likely that the  higher-fidelity models of tomorrow will challenge
the computational resources that will be available in the near future.  As a result, methods are required
to select and choose which simulations will provide the most useful information given the limited
number of simulations that can be performed.  For systems with few inputs, it is often obvious by
inspection where new sample points should be placed.  In contrast, identifying empty regions of high-
dimensional input/output spaces is a difficult task.

As a result, various methods have been
advanced for the design of computer experi-
ments (DoCE).  The typical scenario is a
computational model that maps a set of
inputs to a set of outputs in deterministic or
probabilistic fashion.  The outputs can be
physical quantities or derived functions like
cost, utility, safety, reliability, mean, variance, etc.  Some of the inputs could be design variables, and
some of the outputs may be responses to be optimized by adjusting the inputs.  In any case, when the
computational model is very complex, it is infeasible to test all possible inputs and scenarios.  This is
true both for analyzing the forward problem to quantify the propagation of uncertainty as well as for
design optimization.  A number of approaches for choosing sample simulation points are in the litera-
ture.

 

† 3620 S Vermont Ave KAP210, Los Angeles, CA 90089-2531.  tel: (213) 740-0610, fax: (213) 744-1426, e-mail:
JohnsonE@usc.edu 

or
design variables

uncertainty and
nondeterministic effects

or
decision variables

Figure 1. Uncertain computational input/output map.
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Wynn (1970) and Mitchell (1974) give some of the early work for design of experiments for com-
plex systems.  Some common strategies for designing experiment inputs are Latin Hypercube sam-
pling (McKay 

 

et al.

 

, 1979; Imam and Conover, 1982; Imam and Shortencarier, 1984; Tang, 1993;
Owen, 1994; Ye, 1998), orthogonal array sampling (Koehler and Owen, 1996), Monte Carlo and quasi-
Monte Carlo methods (Niederreiter, 1992), etc.  Conventional grid approaches place samples in a
deterministic way in a regular grid of points.  In Monte Carlo, samples are selected randomly accord-
ing to their user-specified probability distributions.  Latin Hypercube sampling (LHS), a form of strat-
ified sampling (Hammersley and Handscomb, 1964), takes samples at random from distinct
hypercubes in the input variable space.  Quasi-Monte Carlo methods use sequences of inputs that are
designed to fill the input sample space in a deterministic way.

The aim in designing an efficient set of computer experiments is to maximize the knowledge
gained from a limited allocation of computational resources.  This goal takes several interrelated forms
for various applications: in response surface modeling, the goal may be minimal error in a surrogate
approximation of the surface; in uncertainty quantification, one may wish to limit or minimize statis-
tical properties of functions of the input and/or output random variables; in design optimization, min-
imizing some expected cost and, often, its variance are the targets.  However, the approaches in the
literature lack quantitative measures of how much new “information” is added by new sample points.
Further, while these methods can operate on the 

 

input

 

 space, they generally cannot directly evaluate
and enhance the uniformity of sample points in the 

 

output

 

 space.
Thus, this paper advances a new method, based on the mathematical definitions of 

 

discrepancy

 

and 

 

discrepancy sensitivity

 

, of quantifying the contribution of a given sample point to the uniformity
of samples in the entire input/output domain.  Discrepancy, which probably stems from the work of
Kolmogorov (1933), is defined in a number of works in the literature (

 

e.g.

 

, Proinov, 1985; Niederreiter,
1992; Morokoff and Caflisch, 1994).  Essentially, the various discrepancy definitions are measures of
the error between a theoretical distribution and an empirical one based on a set of sample points.  The
sensitivity of the discrepancy with respect to the existence of a sample point was derived by Johnson
(1997) and is also summarized in Johnson and Wojtkiewicz (2002).  In the interests of brevity, these
derivations are omitted here.

To show that the discrepancy sensitivity does indeed classify as “important” the sample points
near holes in the sample space, consider two distributions of 1000 points each, as shown in Fig. 2.  The
sensitivities correctly indicate, with large negative sensitivities, that more samples should be added
near the outer edges or “tails” of the Gaussian distribution and in the empty quadrant for the uniform
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Figure 2. Discrepancy sensitivity for 1000 sample points chosen (

 

a

 

) with a bivariate Gaussian 
distribution and (

 

b

 

) with a uniform distribution over three quadrants of the unit square.

 

The solid line represents an approximate contour of zero sensitivity.  Marker sizes indicate sensitivity magnitude.
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distribution with cutout. In Fig. 2

 

a

 

, the sensitivities near the mean are positive, indicating that extrane-
ous samples are located there, and sensitivities in the “tails” are large negative values, implying that
more samples should be added in the outer regions.  This is exactly the type of indicator required for
characterizing how well the space is filled in the vicinity of the sample points.

Some tests using discrepancy sensitivity to choose new points for characterizing and input/output
maps have been performed.  In these tests, single-input-single-output (SISO) maps were tested.  While
of low order and computationally trivial, these examples were chosen to represent some of the “diffi-
cult” behavior that often appears in real-world problems, such as multimodality, sharp corners and so
forth.  There are a number of discrepancy sensitivity measures that can be computed for input/output
problems.  For example, let 

 

x

 

 be an  vector of inputs and 

 

u

 

 be an  vector of outputs.  The
possible discrepancy sensitivity measures, then, include just that of the samples in the 

 

n

 

-dimensional
input space, just that of the samples in the 

 

m

 

-dimensional output space, that of the combined (

 

m

 

+

 

n

 

)-
dimensional combined input/output space, that of functions of inputs and outputs (

 

e.g.

 

, over the arc
length for SISO and single-input-multi-output problems), etc.

To demonstrate, consider a
ramp function with a sharply dis-
continuous slope and a multimo-
dal cosine function, as shown in
Fig. 3.  In both cases, a set of ten
sample points were first chosen
with a grid approach, evenly dis-
tributed over the domain [

 

−

 

1,2],
as shown in Fig. 3

 

a

 

.  Ninety
additional points are then added
based on one of two sensitivity
discrepancy measures.  In Figs.
3

 

a

 

 and 3

 

b

 

, the combined 2-
dimensional input/output space
discrepancy sensitivity is used.
In Figs. 3

 

c

 

 and 3

 

d

 

, the discrep-
ancy sensitivity along the arc
length is determined by using a
piecewise linear curve through
the points to determine arc
length from the leftmost point.
In both cases, the discrepancy sensitivity is computed for all sample points, and then a cubic spline
interpolant is used to find where the discrepancy sensitivity is most negative — the location to place a
new point.  This is carried out for each point added.  The results are shown in Figs. 3

 

b,c,d

 

.  It can be
seen that both measures of sensitivity do provide coverage of the sample space in a relatively uniform
manner.

In summary, this paper proposes a new approach for efficiently choosing sample points, based on
the discrepancy sensitivity, for the design of computer experiments.  This approach is grounded in the
mathematical definitions of discrepancy, which are used in analyzing pseudorandom number genera-
tion and quasi-Monte Carlo methods.  The long-term aim, as the authors continue to develop the dis-
crepancy sensitivity method, is to develop the approach so that it can be incorporated into large-scale
computational model simulations, and integrated into tools designed for performing the simulations
such as DAKOTA (Eldred, 2001).
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Figure 3. Sample point distribution (o) and the distributions 
projected just in the input space (◊) and just in the output 

space (××××) for two different functions and two methods.
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